Astronomical simulation

The numerical simulations performed in the field of astronomy and astrophysics spans a broad gamut. The scope of the numerical modelling range from simulating the interior of stars, coalescing compact bodies, variable accretion flows, interstellar medium, stellar dynamics, and the formation of the Universe. The arsenal of methods (or algorithmic techniques) used to tackle such scenarios includes magnetohydrodynamics (MHD), smooth-particle hydrodynamics, N-body simulations, Monte-Carlo methods, particle-in-cell (PIC), multigrid, adaptive mesh refinement (for grid bases-simulations), et cetera. The complexity and the time involved in performing such astrophysical simulations is so high that the role of high-performance computing is indispensable.